# STRUCTURE DETERMINATION OF N,N'-DIPHENYLACETAMIDINIUM OXALATE 

Bohumil Kratochvíl ${ }^{a}$, Jiří Novotný, ${ }^{a}$ Svatava Smrčková ${ }^{b}$ and Jiří Krechl ${ }^{b}$<br>${ }^{a}$ Department of Solid State Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6 and<br>${ }^{\text {b }}$ Department of Organic Chemistry,<br>Prague Institute of Chemical Technology, 16628 Prague 6

Received April 17, 1989
Accepted May 15, 1989


#### Abstract

The structure of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate was solved by direct methods and refined anisotropically to $R=0.036$ for 1551 unique observed reflections. The compound $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ crystallizes in the $P 2_{1} / c$ space group with the lattice parameters $a=17 \cdot 672(2)$, $b=8.263(3), c=10.771(2) \AA, \beta=104.64(1)^{\circ}, Z=4$. Intra- and intermolecular hydrogen bonds between amidinium nitrogens and oxalate oxygens of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ types form infinite chains parallel to the [010] direction in the structure. Mutual interactions between the chains are mediated by the van der Waals forces. Planes of the phenyl rings bisect at the dihedral angle of $55 \cdot 8(1)^{\circ}$. In contrast to similar model structures benzamidinium pyruvate, benzamidinium bromoacetate and $p$-methylbenzamidinium formate monohydrate, the structure of $\mathrm{N}, \mathrm{N}^{\prime}-$ -diphenylacetamidinium oxalate does not exhibit the amidine-carboxyl interaction through two parallel intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds.


The specific feature of carboxylic substrates fixation in many enzymes consists in formation of two parallel hydrogen bonds between their active centre arginine and a carboxylic group of the substrate. Amidinium carboxylates are suitable models of this interaction ${ }^{1}$. Although the structures of several enzymes involving this feature have been solved - lactate dehydrogenase ${ }^{2,3}$, carboxypeptidase ${ }^{4}$, malate dehydrogenase ${ }^{5}$ and other enzymes ${ }^{6}$ - relatively low attention has been paid to model compound structures. So far, only the structures of bis(acetamidinium) carbonate monohydrate ${ }^{7}$ and formamide oxime oxalate ${ }^{8}$ were known in the literature and, in our effort to investigate this feature with compounds of different types, we already reported the structures of benzamidinium pyruvate ${ }^{9}$, benzamidinium bromoacetate ${ }^{10}$ and $p$-methylbenzamidinium formate monohydrate ${ }^{11}$.

## EXPERIMENTAL

Synthesis of the compound is described elsewhere ${ }^{12}$. The crystals examined were prepared by crystallization from saturated solution in aqueous methanol. The density of the transparent crystals of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate was determined by the flotation method in a mixture of diiodomethane - toluene.

The crystal with the dimensions of $0.5 \times 0.35 \times 0.2 \mathrm{~mm}$ was measured on an Enraf-Nonius CAD4 diffractometer. Graphite monochromated $\mathrm{MoK}_{\alpha}$ radiation ( $\lambda=0.71073 \AA$ ) was employed and the measurement was carried out at a temperature of $23^{\circ} \mathrm{C}$. The lattice parameters were refined from a set of 18 reflections ( $\Theta$ range $18 \cdot 12-20 \cdot 55^{\circ}$ ). A tofal of 3122 reflections were measured ( $2 \Theta .50^{\circ}$ ) using the $\omega / 2 \Theta$ scan ( $0 \leq h \leq 21,0 \leqq k \leqq 10,-12 \leqq l \leqq 12$ ). No significant fluctuations ( $<1 \cdot 1 \%$ ) in intensities of two standard reflections ( $30 \overline{4}, 310$ ) monitored after every 120 min were found. On the basis of the $I>3 \sigma(I)$ condition, only 1551 reflections were used and considered as observed. The correction for absorption was negligible.

The structure was solved by direct methods. The coordinates of all H atoms were found from the electron density difference synthesis. The quantity $\sum w\left(\left|F_{0}\right|-\left|F_{0}\right|\right)^{2}$ was minimized in the full-matrix least-squares refinement and scale factor, positional and anisotropic thermal parameters of non- H atoms and positional and isotropic thermal parameters of H atoms were refined. The final weighting scheme had the form $w=1 /\left[\sigma\left(F_{0}^{2}\right)+\left(0 \cdot 02 F_{0}\right)^{2}+1\right]-F_{0}$. In the final refinement cycle, the maximal value of ( $\Delta / \sigma$ ) was 0.02 . Refinement yielded the values $R=0.036$ and $w R=0.046$ for 1551 unique observed reflections. The maximum and minimum heights in the final $\Delta \varrho$ map had values of $0 \cdot 14,-0 \cdot 14 \mathrm{e} / \AA^{3}$. The computations were carried out on a PDP $11 / 73$ computer using the SDP program ${ }^{13}$.

## RESULTS AND DISCUSSIONS

The basic crystallographic data are summarized in Table I. Table Il lists the final positional and temperature parameters of non-H atoms and those H atoms which are of importance due to taking part in hydrogen bonding. The interatomic distances and angles are given in Table III. Contrary to amidinium carboxylates studied so far ${ }^{9-11}$ the molecule of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate (Fig. 1) lacks the amidine-carboxyl interaction, mediated otherwise by two parallel intramolecular hydrogen bonds of the $\mathrm{N}-\mathrm{H} . . \mathrm{O}-\mathrm{C}$ types. In the studied structure the HN1 atom connects the N1 and O1 atoms by intramolecular hydrogen bond, while the HN2 atom bridges the N 2 atom and the $\mathrm{O} 1^{\mathrm{i}}$ atom of the adjacent molecule. Every O 1 atom thus acts as a double proton acceptor. Two neighbouring oxalate anions are joined by the $\mathrm{O} 3-\mathrm{HO} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$ hydrogen bond. The O 4 atom does not participate in hydrogen bonding. The side H atoms of amidinium group, present in structures ${ }^{9-11}$ studied previously, are substituted by phenyl groups in the title compound.

Table I
Basic crystallographic data

$$
\begin{aligned}
& a=17 \cdot 672(2) \AA \\
& b=8 \cdot 263(3) \AA \\
& c=10 \cdot 771(2) \AA \\
& \beta=104 \cdot 64(1)^{\circ} \\
& V=1521 \cdot 8(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$\varrho_{0}=1 \cdot 29(2) \mathrm{g} \mathrm{cm}^{-3}$
$\varrho_{\mathrm{c}}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}$
space group: $P 2_{1} / c$
$\mu\left(\mathrm{MoK}_{\alpha}\right)=0.089 \mathrm{~mm}^{-1}$
$F(000)=632$

As can be seen from the crystal packing drawing (Fig. 2), the hydrogen bonds described above give rise to infinite intermolecular chains parallel to the [010] direction. Within the chain, branched and linear parts alternate according to the following scheme.


## Table II

The final coordinates for non-hydrogen atoms (. $10^{4}$ ) and important H atoms $\left(.10^{3}\right)$. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $B_{\mathrm{eq}}=(4 / 3) \sum_{i} \sum_{j} B_{i j} a_{i} a_{j}$

| Atom | $x$ | $y$ | $z$ | $B_{\text {eq }}, \AA$ |
| :--- | ---: | ---: | ---: | :--- |
|  |  |  |  |  |
| O1 | $2057 \cdot 3(9)$ | $-103(2)$ | $6615(1)$ | $3 \cdot 79(4)$ |
| O2 | $2037(1)$ | $-2800(2)$ | $6756(2)$ | $5 \cdot 40(5)$ |
| O3 | $1763(1)$ | $-2372(2)$ | $4028(1)$ | $4 \cdot 36(4)$ |
| O4 | $2887(1)$ | $-1060(3)$ | $4735(2)$ | $6 \cdot 08(5)$ |
| N1 | $2754(1)$ | $2698(2)$ | $5877(2)$ | $3 \cdot 24(4)$ |
| N2 | $2041(1)$ | $3704(3)$ | $3954(2)$ | $3 \cdot 50(4)$ |
| C1 | $2673(1)$ | $3698(3)$ | $4897(2)$ | $3 \cdot 16(5)$ |
| C2 | $3447(1)$ | $2652(3)$ | $6921(2)$ | $3 \cdot 20(5)$ |
| C3 | $3580(1)$ | $3869(3)$ | $7825(2)$ | $3 \cdot 59(5)$ |
| C4 | $4260(2)$ | $3834(4)$ | $8801(2)$ | $4 \cdot 60(6)$ |
| C5 | $4795(2)$ | $2606(4)$ | $8876(3)$ | $5 \cdot 09(7)$ |
| C6 | $4646(2)$ | $1382(4)$ | $7984(3)$ | $5 \cdot 02(7)$ |
| C7 | $3969(2)$ | $1394(4)$ | $7002(2)$ | $4 \cdot 19(6)$ |
| C8 | $1342(1)$ | $2811(3)$ | $3915(2)$ | $3 \cdot 27(5)$ |
| C9 | $847(2)$ | $3315(4)$ | $4640(3)$ | $4 \cdot 44(6)$ |
| C10 | $158(2)$ | $2492(4)$ | $4554(3)$ | $5 \cdot 84(8)$ |
| C11 | $-31(2)$ | $1203(4)$ | $3743(3)$ | $6 \cdot 29(8)$ |
| C12 | $469(2)$ | $680(4)$ | $3052(3)$ | $6 \cdot 35(9)$ |
| C13 | $1165(2)$ | $1487(4)$ | $3134(3)$ | $4 \cdot 90(7)$ |
| C14 | $2104(1)$ | $-1507(3)$ | $6210(2)$ | $3 \cdot 35(5)$ |
| C15 | $2293(1)$ | $-1623(3)$ | $4900(2)$ | $3 \cdot 50(5)$ |
| C16 | $3311(1)$ | $4844(3)$ | $4841(2)$ | $4 \cdot 15(6)$ |
| HN1 | $242(1)$ | $189(3)$ | $587(2)$ | $1 \cdot 3(5)^{a}$ |
| HN2 | $204(1)$ | $426(3)$ | $327(2)$ | $2 \cdot 5(6)^{a}$ |
| HO3 | $193(2)$ | $-234(4)$ | $316(3)$ | $4 \cdot 7(8)^{a}$ |
|  |  |  |  |  |

[^0]
## Table III

The interatomic distances (in $\AA$ ) and angles (in ${ }^{\circ}$ ). Symmetry code: $\mathrm{i}-x, 1.5-y, z+0.5$; ii - $x, 0.5-y, z-0.5$

Distances

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| O1-C14 | $1 \cdot 249(4)$ | $\mathrm{C} 2-\mathrm{C} 7$ | $1 \cdot 378(4)$ |
| $\mathrm{O} 2-\mathrm{C} 14$ | $1 \cdot 240(3)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1 \cdot 384(3)$ |
| $\mathrm{O} 3-\mathrm{C} 15$ | $1 \cdot 303(3)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1 \cdot 375(4)$ |
| $\mathrm{O} 3-\mathrm{HO} 3$ | $1 \cdot 06(3)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1 \cdot 374(4)$ |
| $\mathrm{O} 4-\mathrm{C} 15$ | $1 \cdot 202(3)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1 \cdot 382(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1$ | $1 \cdot 320(3)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1 \cdot 377(4)$ |
| $\mathrm{N} 1-\mathrm{C} 2$ | $1 \cdot 439(3)$ | $\mathrm{C} 8-\mathrm{C} 13$ | $1 \cdot 367(4)$ |
| $\mathrm{N} 1-\mathrm{HN} 1$ | $0 \cdot 89(2)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1 \cdot 377(5)$ |
| $\mathrm{N} 2-\mathrm{C} 1$ | $1 \cdot 305(3)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1 \cdot 365(5)$ |
| $\mathrm{N} 2-\mathrm{C} 8$ | $1 \cdot 431(3)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1 \cdot 362(5)$ |
| $\mathrm{N} 2-\mathrm{HN} 2$ | $0 \cdot 87(3)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1 \cdot 383(4)$ |
| $\mathrm{C} 1-\mathrm{C} 16$ | $1 \cdot 487(4)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1 \cdot 534(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1 \cdot 378(3)$ |  |  |

Angles

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| C15-O3-HO3 | $109(2)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $120 \cdot 4(3)$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$ | $122 \cdot 8(2)$ | $\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ | $119 \cdot 3(2)$ |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{HN} 1$ | $122(1)$ | $\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$ | $119 \cdot 7(2)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{HN} 1$ | $114(1)$ | $\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 13$ | $119 \cdot 6(2)$ |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8$ | $125 \cdot 8(2)$ | $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$ | $120 \cdot 7(2)$ |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{HN} 2$ | $119(1)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $119 \cdot 5(3)$ |
| $\mathrm{C} 8-\mathrm{N} 2-\mathrm{HN} 2$ | $115(1)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ | $119 \cdot 9(4)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ | $121 \cdot 6(2)$ | $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ | $120 \cdot 6(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 16$ | $120 \cdot 1(2)$ | $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ | $120 \cdot 2(3)$ |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 16$ | $118 \cdot 4(3)$ | $\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$ | $119 \cdot 2(3)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ | $119 \cdot 5(3)$ | $\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2$ | $127 \cdot 8(2)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$ | $119 \cdot 6(3)$ | $\mathrm{O} 1-\mathrm{C} 14-\mathrm{C} 15$ | $115 \cdot 4(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$ | $120 \cdot 9(2)$ | $\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 15$ | $116 \cdot 8(2)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $118 \cdot 8(2)$ | $\mathrm{O} 3-\mathrm{C} 15-\mathrm{O} 4$ | $125 \cdot 0(2)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $120 \cdot 8(3)$ | $\mathrm{O} 3-\mathrm{C} 15-\mathrm{C} 14$ | $114 \cdot 2(2)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $119 \cdot 7(2)$ | $\mathrm{O} 4-\mathrm{C} 15-\mathrm{C} 14$ | $120 \cdot 9(2)$ |

Hydrogen bonds

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1 \cdots \mathrm{O} 1$ | $2 \cdot 829(3)$ | $\mathrm{N} 1-\mathrm{HN} 1 \cdots \mathrm{O} 1$ | $153(2)$ |
| $\mathrm{N} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ | $2 \cdot 778(3)$ | $\mathrm{N} 2-\mathrm{HN} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ | $169(2)$ |
| $\mathrm{O} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$ | $2 \cdot 616(2)$ | $\mathrm{O} 3-\mathrm{HO} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$ | $170(3)$ |

Dotted lines designate intra- or intermolecular hydrogen bonds, comma between atoms means that they belong to the same molecule and symbols i and ii respectively represent symmetry codes (see Table III). The chains are interconnected by van der Waals forces.

Fig. 1
View of the molecule of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate. Thermal ellipsoids are drawn at the $50 \%$ probability level


Fig. 2
Packing diagram. Dashed lines indicate the hydrogen bonding

The system of hydrogen bond contacts in $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate is related to the mutual orientation of phenyl rings, which are not symmetrically bent to the opposite sides of the molecule. Interaction of the N 2 and O 2 atoms meidated by the HN2 hydrogen is thus made impossible. The dihedral angle of the phenyl ring planes is $55 \cdot 8(1)^{\circ}$; the $\mathrm{C} 1, \mathrm{~N} 1, \mathrm{C} 2$ and $\mathrm{C} 1, \mathrm{~N} 2, \mathrm{C} 8$ planes are mutually only slightly tilt by $7.0(9)^{\circ}$. The torsion angle values are as follows: $\mathbf{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$ $-105 \cdot 2(3)^{\circ}$; $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3,74 \cdot 7(3)^{\circ}$; $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 13,-106.9(3)^{\circ}$ and $\mathrm{C} 1-$ —N2—C8-C9, 74.6(3).

The study of the model structure of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium oxalate showed that, in contrast to our original presumption, the sole substitution of the amidinium side hydrogens by, e.g., phenyls, is not sufficient for blocking the intermolecular hydrogen bonding. Furthermore, the influence of the anion on the hydrogen bond system in amidinium carboxylates appears to be very important. As follows from our preliminary, unpublished results of the structure-study of $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylacetamidinium trifluoroacetate where the amidinium side hydrogens are also substituted by phenyls, intermolecular hydrogen bonds are here not formed at all.

## REFERENCES

1. Smř̌ková S.: Chem. Listy 82, 337 (1988).
2. Adams J. M., Buehner M., Chandrasekhar K., Ford G. C., Hackert M. L., Liljas A., Rossmann M. G., Smiley J. E., Allison W. S., Everse J., Kaplan N. O., Taylor S. S.: Proc. Natl. Acad. Sci. U.S.A. 70, 1968 (1973).
3. Eventoff W., Rossmann M. G., Taylor S. S., Torff H. J., Meyer H., Keil W., Kiltz H. H.: Proc. Natl. Acad. Sci. U.S.A. 74, 2677 (1977).
4. Christianson D. W., Lipscomb W. N.: Proc. Natl. Acad. Sci. U.S.A. 83, 7568 (1986).
5. Roderick S. L., Banaszak L. J.: J. Biol. Chem. 261, 9461 (1986).
6. Riordan J. F.: Mol. Cell. Biochem. 26, 71 (1979).
7. Norrestam R.: Acta Crystallogr., C 40, 297 (1984).
8. Kjoeller Larsen I.: Acta Crystallogr., C 41, 749 (1985).
9. Kratochvil B., Ondráček J., Krechl J., Hašek J.: Acta Crystallogr. C 43, 2182 (1987).
10. Kratochvil B., Ondráđek J., Malý K., Csordás L.: Collect. Czech. Chem. Commun. 53, 294 (1988).
11. Kratochvil B., Ondrážek J., Hašek J., Csordás L.: Collect. Czech. Chem. Commun. 53, 3131 (1988).
12. Krechl J., Smrčková S., Ludwig M., Kuthan J.: Collect. Czech. Chem. Commun. 55, 469 (1990).
13. Frenz B. A. and Associates: SDP. Structure Determination Package. College Station, Texas 77840, U.S.A. and Enraf-Nonius, Delft, Holland 1985.

Translated by the authors (B. K. and J. K.).


[^0]:    ${ }^{a}$ Atoms refined isotropically.

